Simple and Compound interest calculations:

SIMPLE INTEREST:

Simple interest is given by,

$$S.I = P*n*R/100$$

Where in,

- P- Principle in Rs
- n- Number of years.
- R- Rate of interest, expressed as %.

Let us arbitrarily take the value of "n", the number of years to be 5.

Now,

S.I = 5*P*R/100 in which at any given year interest will be P*R/100.

COMPOUND INTEREST:

Here again, let us assume a scenario of 5 years.

1st YEAR:

Let us assume the initial principal to be P₁.

If the rate of interest is R, Simple interest for 1st year is given by,

$$S.I_1 = (P_1 * R)/100$$
(1)

2nd YEAR:

Principal for 2nd year is,

$$P_2 = P_1 + S.I_1$$

$$_{=}P_{1} + ((P_{1}*R)/100)$$
 (From equation (1))

$$P_2 = P_1(1 + (R/100)) = A_1$$
 (Where A_1 is amount after 1 year).....(2)

$$S.I_2 = P_2*R/100$$

=
$$P_1(R/100)*(1+(R/100))$$
(From equation (2)).....(3)

3rd YEAR:

Principal for 3rd year is,

$$P_3 = P_2 + S.I_2$$

$$S.I_n - S.I_{(n-1)} = (P_1*R/100)*(1+(R/100))^{(n-1)} - ((P_1*R/100)*(1+(R/100))^{(n-2)}$$

$$(From \ equation \ (11))$$

$$= P_1*(R/100)^2*(1+(R/100))^{(n-2)}....(12)$$

A case when the amount becomes 'x' times the principal in the simple interest mode:

When principal gets doubled (A=2*P),

$$P+(P*n*R/100)=2*P$$

$$n = 100/R$$

When principal becomes 1.5 times its initial value (A=1.5*P),

$$P + (P*n*R/100)=1.5*P$$

$$n = 50/R$$

In general, when principal becomes 'x' times its initial value (A=x*P),

$$n = (x-1)*100/R...$$
 (13)

Example: When the initial principal is Rs 1000 and the rate of interest is 10% compounded annually, calculate

- 1. The principal for 3rd year?
- 2. The interest for 4th year?
- 3. The difference in interest for 5th year and 4th year?

Solution:

- 1. Principal for 3^{rd} year = $P_3 = 1000*(1+(10/100))^2$ (From equation (10)) = Rs 1210.
- 2. Interest for 4th year = $S.I_4 = (1000*10/100)*(1+(10/100))^3$ (From equation (11))

$$= Rs 133.1.$$

3. Difference in interest for 5th and 4th year is,

=
$$1000*(10/100)^2*(1+(10/100))^3$$
 (From equation (12))

= Rs 13.31.